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The massively parallelized solution to calculation of elemnt contributions, assembly of the overall system (globalti§fness matrix)
and the solution of the resulting simultaneous equations usg the Meshless Local Petrov Galerkin Method — MLPG. The man
objective is to build a solution “end-to-end” running on graphics processing units — GPU, comprising the assembly and Istion
of linear equations system in an integrated manner. Thus, weropose the Meshless Petrov Galerkin Local Node-by-Node Mieod
using CUDA, which takes advantage of essentially parallel ature of MLPG, the no need mesh at any stage and even the possity
of solution of systems of linear equations without the needof overall assembly of the involved matrix.

Index Terms—GPU, meshless, MLPG, solver.

I. INTRODUCTION The step$12 andl 3 have really relevant computational costs

ESHLESS methods have clear benefits for certain ef0d therefore will be the focus of the parallelization pregd
gineering problems, especially when the quality of thé this work. The scheme regarding of stdp 2, which consists
mesh can not be guaranteed. The development of the metHfaevaluating the weak form for each node of the subdomain
on the other hand, is more difficult compared to methods ttgt the problem, calculating the nodes in the support domain
have a support networkl[1] and this is reflected directly with 2nd interpolating the values in the Gauss points to perfon t
computational cost. numerical integration, is presented in the Hib. 1, whereas t
To make it attractive also in terms of performance, aftePL3 is represented by the Algoritfii 1.
alternative as to use high-performance scientific compgutin
techniques, such as GPUs, with its thousands of independent Stiffness Matrix Assembly
processing units, is gaining in importance. There are dfrea Tpe assembly of the stiffness matrix using the MLPG
solutions to generation of functions of formulation, numer;g computed node-by-node independently, which means in
cal integration, interdependence relation between nodes & 4ctice that each node is in charge of a thread itself. For
application of boundary conditions][2], however, reseaschynis cajculation we apply two slightly different interptiten
that addresses the end-to-end problem by subdividing @ int,ethods: Moving Least Squares — MLS and Radial point

elements equivalent to the Finite Element Method Element Rgerpolation method with polynomial terms — RPIME [2].
Element — EbE-FEMI[[B], are still in the early stages. The

problem is that in addition to calculating the contribusoof
nodes it is also necessary to solve the system of equati@ms ev
before having it completely in memory.

The objective of this work is to present a solution based
on the bi-conjugate gradient method — BIiCG integrated to 6§§§§§§§§2§§2§@ Each node will be computed

e Distribution of nodes in the domain
e o and on the boundaries

the MLPG, which by definition inserts values in the global by an independent GPU thread
matrix line by line. In this way, it is expected that duringeth
composition of the global stiffness matrix its solution ke

And each thread performs

started without the need for data transfers to CPU. the same steps as MLPG
II. AFuLLY GPU SOLUTION STEPS OF MLPG
An alternative, equivalent to the proposal for the EbE- @ Domain of support determination
FEM [3], is to work with the individual contributions of the @ Defermination of the real cordinates of the support domain nodes

nodes without building the system integrally. In MLPG tl8s i
possible due to the property that each subdomain of a node can
be integrated independently of the other [L], [2]. By anaigz
the formulation of the method at a more genera| level, the e Calculate the values of the shape functions and their derivates
solution can be divided into the foIIowing main steps: 6 Evaluates the weak form considering the boundary conditions
1) Generat[ion of prOblem geomet_ryv node distribution and 0 Sum all the contributions to the matriz and right-hand-vector
generation of quadrature domains;
2) Assembly of the linear matrix system through the eval-
uat|0|j of the weak Iopal fprm n each subdomain; Fig. 1. Assembly of the linear matrix system through the @atidn of the
3) Solution of the resulting linear equation system; weak local form in each subdomain.
4) Computation of results at points of interest.

e Determination of the integration intervals

9 Determination of Gauss points for numerical integration



Algorithm 1: Overview of the algorithm that addresses subdomain at the points of integration is calculated.
the solution of the linear equations system assembled in The weak form is then evaluated, according to the form
the device (GPU).

1(...)
2 /11
3 70

4 for

nitialization of the residue sequence
0 0
= r((l ) = by :c((I ) =0

1=1,2,...do //Bi CGiterations

function adopted, and all numerical integrations are peréa.
In this step, the boundary conditions must be considerediwhe
using the penalty method (MLS case). The MLPG5 [6] has
a particularity that makes it interesting for parallelinat
the contribution of each node to the assembly of the system
happens in a single line of the stiffness matrix.

Finalizing the individual node computation, its contrilout

5 /1 Application of the preconditioner in z, e %, is summed in the resulting system of linear equations and the
6 | resolvaMz=r{"Y resolva Mz, = 7~ 1) the solution process starts immediately from the individua
contribution of the node, without necessarily having a $yoe
7 //Calcul ation of p fromresidue sequences nization barrier separating the assembly (§fep 2) andisnolut
p; = 27 Fi-1) (stepCB) and no data traffic return to the CPU other than those
if p; =0 or & =0 then (failure); of the response to the treated problem.
10 // Update of the search direction sequence p B. Solver Sep
and p fromthe iteration residue sequences . . . . . .
and the last values of p The BICG iterations are essentially sequential, since all
it i — 1 then values used by any iteration were computed by the iteration
1 ‘= 0 ) i—1, Vi # 0. However, within each iteration we have operations
12 ‘ Pg=% P =2q performed line by line of the system, in addition to comdiete
13 else independent operations that can be performed concurréntly
14 Bi= /’i_/Pi—l o is from these operations that we will explore the paralsfeli
15 Pq = 2@ + Bip, p=172 +Bip and, above all, create approaches so that CPU intervention
16 end if is not necessary until the iterations sufficient to reach the
' ' predefined acceptable error are realized. The variouslsletai
17 /1 Updating the sequence that defines the step of this algorithm will be explained later.
“’;e given, ke kAT~ After the system solution process, the interpolation of the
18 | k= Agp, kg =Agp values of interest, objective of the method, is then possiit
1 //Step direction update, o this point only the resulting processing data is passed ¢o th
20 | a;=pi/p" k
) [1l. CONCLUSION
21 /| Response sequence updating, =z, based on step . . . .
direction and size The solution being built has become feasible due to the
22 T, =T, + ap, dynamic paralelelism now available in the CUDA language.
This feature allows the CUDA kernel to create and syncheniz
23 //Upgati ng éhe iteratfi on resi rt]iue Isequerr:ce, T directly on the GPU, anywhere in the program. Therefore, we
and 7, _su tracti ng rromeacn val ue t he st ep H Ao H H
k and k respectively in the direction a are doing an end-to-end formulqtlon of the solutlt_)n, erddrc
" o= — ik FeF— ok completely in GPU: no data traffic to the CPU during process-
¢ e T v ing, except for the delivery of the values already computedl a
25 // Check accuracy of approach and continue if ready for the interpolation of the values of interest.
necessary
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27 [/ Conmposition of z fromall x4

28 / /I nterpolation of the values of interest
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