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The massively parallelized solution to calculation of element contributions, assembly of the overall system (global stiffness matrix)
and the solution of the resulting simultaneous equations using the Meshless Local Petrov Galerkin Method — MLPG. The main
objective is to build a solution “end-to-end” running on graphics processing units — GPU, comprising the assembly and solution
of linear equations system in an integrated manner. Thus, wepropose the Meshless Petrov Galerkin Local Node-by-Node Method
using CUDA, which takes advantage of essentially parallel nature of MLPG, the no need mesh at any stage and even the possibility
of solution of systems of linear equations without the need for overall assembly of the involved matrix.

Index Terms—GPU, meshless, MLPG, solver.

I. I NTRODUCTION

M ESHLESS methods have clear benefits for certain en-
gineering problems, especially when the quality of the

mesh can not be guaranteed. The development of the method,
on the other hand, is more difficult compared to methods that
have a support network [1] and this is reflected directly without
computational cost.

To make it attractive also in terms of performance, an
alternative as to use high-performance scientific computing
techniques, such as GPUs, with its thousands of independent
processing units, is gaining in importance. There are already
solutions to generation of functions of formulation, numeri-
cal integration, interdependence relation between nodes and
application of boundary conditions [2], however, researches
that addresses the end-to-end problem by subdividing it into
elements equivalent to the Finite Element Method Element per
Element — EbE-FEM [3], are still in the early stages. The
problem is that in addition to calculating the contributions of
nodes it is also necessary to solve the system of equations even
before having it completely in memory.

The objective of this work is to present a solution based
on the bi-conjugate gradient method — BiCG integrated to
the MLPG, which by definition inserts values in the global
matrix line by line. In this way, it is expected that during the
composition of the global stiffness matrix its solution will be
started without the need for data transfers to CPU.

II. A F ULLY GPU SOLUTION

An alternative, equivalent to the proposal for the EbE-
FEM [3], is to work with the individual contributions of the
nodes without building the system integrally. In MLPG this is
possible due to the property that each subdomain of a node can
be integrated independently of the other [1], [2]. By analyzing
the formulation of the method at a more general level, the
solution can be divided into the following main steps:

1) Generation of problem geometry, node distribution and
generation of quadrature domains;

2) Assembly of the linear matrix system through the eval-
uation of the weak local form in each subdomain;

3) Solution of the resulting linear equation system;
4) Computation of results at points of interest.

The steps 2 and 3 have really relevant computational costs
and therefore will be the focus of the parallelization proposed
in this work. The scheme regarding of step 2, which consists
of evaluating the weak form for each node of the subdomain
of the problem, calculating the nodes in the support domain
and interpolating the values in the Gauss points to perform the
numerical integration, is presented in the Fig. 1, whereas the
step 3 is represented by the Algorithm 1.

A. Stiffness Matrix Assembly

The assembly of the stiffness matrix using the MLPG
is computed node-by-node independently, which means in
practice that each node is in charge of a thread itself. For
this calculation we apply two slightly different interpolation
methods: Moving Least Squares — MLS and Radial point
interpolation method with polynomial terms — RPIMp [2].
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Fig. 1. Assembly of the linear matrix system through the evaluation of the
weak local form in each subdomain.



Algorithm 1: Overview of the algorithm that addresses
the solution of the linear equations system assembled in
the device (GPU).

1 (...)

2 //Initialization of the residue sequence

3 r̃(0) = r
(0)
q = bq x

(0)
q = 0

4 for i = 1, 2, . . . do //BiCG iterations

5 //Application of the preconditioner in zq e z̃q

6 resolvaMz = r
(i−1)
q resolvaMz̃q = r̃(i−1)

7 //Calculation of ρ from residue sequences

8 ρi = z(i)
T

r̃(i−1)

9 if ρi = 0 or ξi = 0 then (failure);

10 //Update of the search direction sequence p
and p̃ from the iteration residue sequences
and the last values of ρ

11 if i = 1 then
12 pq = z(i) p̃ = z̃

(i)
q

13 else
14 βi = ρi/ρi−1

15 pq = z(i) + βipq p̃ = z̃
(i)
q + βip̃

16 end if

17 //Updating the sequence that defines the step

to be given, k e k̃

18 k = Aqpq k̃q = AT
q p̃

19 //Step direction update, α

20 αi = ρi/p̃
(i)T k(i)

21 //Response sequence updating, x, based on step
direction and size

22 xq = xq + αipq

23 //Updating the iteration residue sequence, r
and r̃, subtracting from each value the step
k and k̃ respectively in the direction α

24 rq = rq − αik r̃ = r̃ − αik̃q

25 //Check accuracy of approach and continue if
necessary

26 end for

27 //Composition of x from all xq

28 //Interpolation of the values of interest

The first task is the determination of the local node support
domain, made by scanning in the neighborhood of the node to
find the nodes that form the support domain. In sequence, the
real (Cartesian) coordinates are obtained. Then the boundary
of the subdomain is calculated to perform the numerical
integration by the Gauss method, and the integration points
are determined. In these points the values ofφ and dφ/dn
are evaluated, that is, the value of the functions of form and
of its derivative with respect to normal to the border of the

subdomain at the points of integration is calculated.
The weak form is then evaluated, according to the form

function adopted, and all numerical integrations are performed.
In this step, the boundary conditions must be considered when
using the penalty method (MLS case). The MLPG5 [6] has
a particularity that makes it interesting for parallelization:
the contribution of each node to the assembly of the system
happens in a single line of the stiffness matrix.

Finalizing the individual node computation, its contribution
is summed in the resulting system of linear equations and then
the solution process starts immediately from the individual
contribution of the node, without necessarily having a synchro-
nization barrier separating the assembly (step 2) and solution
(step 3) and no data traffic return to the CPU other than those
of the response to the treated problem.

B. Solver Step

The BiCG iterations are essentially sequential, since all
values used by anyi iteration were computed by the iteration
i−1, ∀i 6= 0. However, within each iteration we have operations
performed line by line of the system, in addition to completely
independent operations that can be performed concurrently. It
is from these operations that we will explore the paralelelism
and, above all, create approaches so that CPU intervention
is not necessary until the iterations sufficient to reach the
predefined acceptable error are realized. The various details
of this algorithm will be explained later.

After the system solution process, the interpolation of the
values of interest, objective of the method, is then possible. At
this point only the resulting processing data is passed to the
CPU.

III. C ONCLUSION

The solution being built has become feasible due to the
dynamic paralelelism now available in the CUDA language.
This feature allows the CUDA kernel to create and synchronize
directly on the GPU, anywhere in the program. Therefore, we
are doing an end-to-end formulation of the solution, enforced
completely in GPU: no data traffic to the CPU during process-
ing, except for the delivery of the values already computed and
ready for the interpolation of the values of interest.
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